

Revisiting of pulmonary vein stenosis after high-power short-duration radiofrequency ablation in patients with atrial fibrillation

Daehoon Kim, Joongmin Kim, Je-Wook Park, Hee Tae Yu, Tae-Hoon Kim, Jae-Sun Uhm, Boyoung Joung, Moon-Hyoung Lee, and Hui-Nam Pak

Yonsei University College of Medicine

Disclosure

The authors have no financial conflicts of interest to disclose concerning the presentation

BACKGROUND

- AF catheter ablation (AFCA)
 - Maintenance sinus rhythm
 - Preventing AF recurrence
- Conventional power RFCA vs. High power short duration RFCA (HPSD-RF)
 - Similar efficacy outcome
 - Similar safety outcome
 - Reduction procedure time
 - \rightarrow Increasing portion of HPSD-RF

M. Kottmaier, et al., EP Europace 2020, 22, 388-393

BACKGROUND

- Pulmonary vein stenosis after AFCA
 - Well known complication of AFCA
 - Normally appearing 3 ~ 6 months after procedure
 - Incidence :

All - from 0% to 44% (median 5.4%)

Severe (necessary for intervention) < 1%

C. Teunissen, et al., JACC: Clinical Electrophysiology 2017, 3, 589-598

BACKGROUND

• PV stenosis after HPSD-AFCA

• "Overall complication rate for HPSD and LPLD are at least comparable"

R. A. Winkle, Journal of Cardiovascular Electrophysiology 2021, 32, 2813-2823 J. Kewcharoen, et al., Journal of Cardiovascular Electrophysiology 2021, 32, 71-82

- In HPSD, resisting heating (>50°C) causes :
 - Immediate, irreversible myocardial tissue injury with cellular death
 - More damage to tissue could be provoke pulmonary vein stenosis.

INTRODUCTION

- Study design
 - Single center prospective population-based cohort study

(Yonsei AF Ablation Cohort Database)

- Total 5,246 cases in March 2009 to June 2022
 - Exclusion criteria : 1) AF c RVD, 2) History of AF surgery, 3) Cryoablation
 - Finally, **3,851 cases** were analyzed.
 - Propensity score overlap weighting was used.
 - PS variables : age, sex, paroxysmal AF, the number of AFCA, CHA2DS2-VASc score, LA-AP diameter, LA volume index, LV ejection fraction
- Symptomatic pulmonary vein stenosis : With symptom or sign(CXR) & confirmed by CT with pulmonary vein stenosis

RESULTS – Baseline characteristics

		Before overlap weighting		
	Overall (N=3851)	Conv-AFCA (N = 2832)	HPSD-AFCA (N = 1019)	p-value
Age	59.1 ± 12.2	58.6 ± 10.7	60.3 ± 15.6	<0.001
Sex (male)	2888 (75.0%)	2119 (74.8%)	769 (75.5%)	0.716
BMI	25.1 ± 3.1	25.1 ± 3.0	25.1 ± 3.1	0.416
Paroxysmal AF	2555 (66.3%)	1975 (69.7%)	580 (56.9%)	<0.001
The number of repeated AFC A	1.1 ± 0.4	1.1 ± 0.4	1.2 ± 0.4	<0.001
CHA2DS2-VASc score	1.7 ± 1.5	1.6 ± 1.5	1.8 ± 1.5	0.004
Hypertension	1800 (46.7%)	1319 (46.6%)	481 (47.2%)	0.758
Diabetes mellitus	587 (15.2%)	417 (14.7%)	170 (16.7%)	0.15
Heart failure	487 (12.6%)	281 (9.9%)	206 (20.2%)	<0.001
Stroke	377 (9.8%)	265 (9.4%)	112 (11.0%)	0.149
TIA	45 (1.2%)	36 (1.3%)	9 (0.9%)	0.413
Vascular disease	351 (9.1%)	294 (10.4%)	57 (5.6%)	<0.001
Echocardiographic findings				
LV EF (%)	63.2 ± 8.1	63.2 ± 8.1	63.2 ± 8.1	0.835
LA AP diameter (mm)	41.2 ± 6.3	41.0 ± 6.0	42.0 ± 6.9	< 0.001
LA volume index (ml/m2)	37.4 ± 12.8	36.2 ± 12.3	40.5 ± 13.7	<0.001
E/Em	10.2 ± 4.3	10.1 ± 4.3	10.3 ± 4.2	0.225

RESULTS – Baseline characteristics

			Before overlap weighting			After overlap weighting		
		Overall (N=3851)	Conv-AFCA (N = 2832)	HPSD-AFCA (N = 1019)	p-value	Conv-AFCA (N = 2832)	HPSD-AFCA (N = 1019)	p-value
Ag	e	59.1 ± 12.2	58.6 ± 10.7	60.3 ± 15.6	<0.001	59.5 ± 10.4	59.5 ± 11.1	1
Se>	(male)	2888 (75.0%)	2119 (74.8%)	769 (75.5%)	0.716	75.5%	75.5%	1
ΒN	I	25.1 ± 3.1	25.1 ± 3.0	25.1 ± 3.1	0.416	25.0 ± 3.0	25.2 ± 3.1	0.122
Par	roxysmal AF	2555 (66.3%)	1975 (69.7%)	580 (56.9%)	<0.001	60.9%	60.9%	1
Tho A	e number of repeated AFC	1.1 ± 0.4	1.1 ± 0.4	1.2 ± 0.4	<0.001	1.2 ± 0.4	1.2 ± 0.4	1
СН	A2DS2-VASc score	1.7 ± 1.5	1.6 ± 1.5	1.8 ± 1.5	0.004	1.7 ± 1.5	1.7 ± 1.5	1
Hy	pertension	1800 (46.7%)	1319 (46.6%)	481 (47.2%)	0.758	46.9%	46.1%	0.675
Dia	betes mellitus	587 (15.2%)	417 (14.7%)	170 (16.7%)	0.15	14.3%	16.5%	0.101
He	art failure	487 (12.6%)	281 (9.9%)	206 (20.2%)	<0.001	15.7%	15.7%	1
Str	oke	377 (9.8%)	265 (9.4%)	112 (11.0%)	0.149	9.5%	10.9%	0.232
TIA		45 (1.2%)	36 (1.3%)	9 (0.9%)	0.413	1.3%	0.9%	0.422
Vas	scular disease	351 (9.1%)	294 (10.4%)	57 (5.6%)	<0.001	10.1%)	5.5%	< 0.001
Ecł	ocardiographic findings							
	LV EF (%)	63.2 ± 8.1	63.2 ± 8.1	63.2 ± 8.1	0.835	63.2 ± 8.6	63.2 ± 7.9	1
	LA AP diameter (mm)	41.2 ± 6.3	41.0 ± 6.0	42.0 ± 6.9	<0.001	41.6 ± 6.2	41.6 ± 6.8	1
	LA volume index (ml/m2)	37.4 ± 12.8	36.2 ± 12.3	40.5 ± 13.7	<0.001	39.0 ± 13.6	39.0 ± 12.7	1
	E/Em	10.2 ± 4.3	10.1 ± 4.3	10.3 ± 4.2	0.225	10.5 ± 4.7	10.1 ± 4.1	0.021

RESULTS – Procedure related outcome

- Procedure time
 - 163.6 ± 62.0 vs. 117.4 ± 31.2 min (Conv-RFCA vs. HPSD, p < 0.001)
- Fluoro time
 - 37.3 ± 119.8 vs. 24.3 ± 9.1 min (Conv-RFCA vs. HPSD, p < 0.001)
- Ablation time
 - 4140.2 ± 1799.6 vs. 2127.4 ± 1086.1 sec (Cov-RFCA vs. HPSD, p < 0.001)
- Symptomatic pulmonary vein stenosis after AFCA
 - Total **14 cases** (Overall event rate : 13/3851, **0.36%**)

	RF protocol <i>,</i> Type of cath	Stenotic lesion	Type of AF	No. of AFCA proc edures	Time to Dx (Day)	Symptom	Intervention
Case 1	ConvP, Unidentified catheter	LSPV	PAF	Re-do	454	Hemoptysis	Observation
Case 2	ConvP, Unidentified catheter	RSPV, RIPV	PAF	Re-do	623	Dyspnea of exertion	RIPV stent insertion Surgical pleurodesis
Case 3	ConvP, Unidentified catheter	RSPV	PAF	Tri-do	390	Hemoptysis	Observation
Case 4	ConvP, Unidentified catheter	LSPV, LIPV	PAF	De novo	432	Dyspnea of exertion	Failed intervention
Case 5	ConvP, Cool Flex™	RSPV, RIPV	PAF	De novo	265	Hemoptysis	RIPV stent insertion
Case 6	ConvP, Cool Flex™	LSPV, LIPV	PAF	De novo	287	Chest pain, cough	LIPV stent insertion
Case 7	HPSD, FlexAbility™	RIPV	PAF	De novo	195	Dyspnea of exertion Pleural effusion	Thoracic surgery (Wedge resection)
Case 8	HPSD, FlexAbility™	RIPV	PAF	De novo	48	Dyspnea of exertion	Observation
Case 9	HPSD, FlexAbility™	RIPV	PAF	De novo	154	Hemoptysis Chest pain	Observation
Case 10	HPSD, FlexAbility™	RIPV	PAF	De novo	255	Hemoptysis	RIPV stent insertion
Case 11	HPSD, FlexAbility™	LIPV	PAF	De novo	412	Hemoptysis	Observation
Case 12	HPSD, FlexAbility™	LIPV, LSPV	PAF	Re-do	383	Hemoptysis	Balloon angioplasty
Case 13	HPSD, FlexAbility™	RIPV	PAF	De novo	361	No symptom (Pleural effusion on CXR)	Observation
Case 14	HPSD, Elev∆bility™	RSPV, RIPV	PeAF	Re-do	541	DOE	RSPV stent insertion

RESULTS - Procedure related complications

KHRS 2023

RESULTS – Procedure related complications

		Overall (N=3851)	Conv-AFCA (N = 2832)	HPSD-AFCA (N = 1019)	p-value
Overall Complications		175 (4.6%)	134 (4.7%)	42 (4.1%)	0.476
	Major complications*	122 (3.2%)	86 (3.0%)	36 (3.5%)	0.502
	Symptomatic PVS	14 (0.4%)	6 (0.2%)	8 (0.8%)	0.021
	Minor complications ⁺	48 (1.2%)	42 (1.5%)	6 (0.6%)	0.041

- Symptomatic pulmonary vein stenosis, atrio-esophageal fistula, pericardial tamponade, stroke or transient ischemia attack, phrenic nerve paralysis, access site pseudoaneurysm or arterio-venous fistula
- [†] Pericarditis, fever, transient bradycardia, transient phrenic nerve paralysis, pleural effusion and others

Cumulative incidence of PVS

Weighted population

Cumulative incidence of PVS

Weighted population

 Association between PV stenosis and variables by Cox regression analyses

*Unable to calculate the hazard ratios since none of the patients with pulmonary vein stenosis had the comorbidity or ablated with contact force sensing.

- Pulmonary vein characteristics in patients with PV stenosis
 - No dominant distribution (Lt vs. Rt/ Sup vs. Inf)
 - Smaller antral diameters and cross-sectional area

	Overall (N=56)	Non-stenotic PV (N=36)	Stenotic PV (N=20)	P-value
Ostial longitudinal diameter, mm	16.9 ± 3.4	17.3 ± 2.7	16.1 ± 4.4	0.209
Ostial transverse diameter, mm	12.4 ± 3.0	12.9 ± 2.6	11.3 ± 3.5	0.062
Antral longitudinal diameter, mm	17.4 ± 3.7	18.2 ± 3.2	16.1 ± 4.3	0.046
Antral transverse diameter, mm	14.2 ± 3.7	15.1 ± 3.3	12.7 ± 4.0	0.019
Estimated ostial CSA, mm ²	167.3 ± 58.7	176.3 ± 49.2	151.1 ± 71.2	0.125
Estimated antral CSA, mm ²	201.6 ± 82.6	219.4 ± 75.7	169.5 ± 86.8	0.029
				KHRS 2

- In our experiences, PV stenosis after RFCA seems to occur more in patients treated by HPSD-RFCA.
- The HPSD-RFCA has shorter procedure time than conv-RFCA's.
- The HPSD-RFCA & repeated AFCA, PAF were independently associated with significant PV stenosis occurrence.
- Stenotic PV after RFCA has **smaller antral diameters** and **CSA**.

CONCLUSION

- The HPSD-RFCA has advantage for reducing procedure time with similar efficacy & safety compared by conv-RFCA
- But, the HPSD can be risk factor for PV stenosis after RFCA.
- BE cautious! when HPSD-RFCA is planned for patient who undergo multiple-time procedure and have a smaller PV antral diameters or cross-sectional area.

THANKS for ATTENTION

